MOTS-c(human) acetate

MedChemExpress

®

Cat. No.:	HY-P2048A			
Molecular Formula:	C ₁₀₃ H ₁₅₆ N ₂₈ O ₂₄ S ₂			
Molecular Weight:	2234.64			
Sequence:	Met-Arg-Trp-Gln-Glu-Met-Gly-Tyr-Ile-Phe-Tyr-Pro-Arg-Lys-Leu-Arg MRWQEMGYIFYPRKLR (acetate salt)			
Sequence Shortening:				
Target:	AMPK; GLUT			
Pathway:	Epigenetics; PI3K/Akt/mTOR; Membrane Transporter/Ion Channel			
Storage:	Sealed storage, away from moisture			
	Powder -80°C 2 years			
	-20°C 1 year			
	* In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)			

SOLVENT & SOLUBILITY

Preparing Stock Soluti		Solvent Mass Concentration	1 mg	5 mg	10 mg
	Preparing Stock Solutions	1 mM	0.4475 mL	2.2375 mL	4.4750 mL
		5 mM			
		10 mM			

BIOLOGICAL ACTIVITY						
Description	MOTS-c(human) acetate is a mitochondrial-derived peptide. MOTS-c(human) acetate induces the accumulation of AMP analog AICAR, increases activation of AMPK and expression of its downstream GLUT4. MOTS-c(human) acetate induces glucose uptake and improves insulin sensitivity. MOTS-c(human) acetate has implications in the regulation of obesity, diabetes, exercise, and longevity ^[1] .					
IC ₅₀ & Target	АМРК	GLUT4	AICAR			
In Vitro	MOTS-c inhibits the folate cycle at the level of 5Me-THF, resulting in an accumulation of AICAR [5-aminoimidazole-4- carboxamide ribonucleotide). MOTS-c also increases cellular NAD ⁺ levels, which are also nucleotide precursors ^[1] . MOTS-c is a mitochondrial signal that stimulates cellular glucose uptake while suppressing respiration. The glucose taken up in response to MOTS-c is routed to the anabolic pentose phosphate pathway (PPP), which provides carbon sources for the synthesis of purines, rather than being metabolized through glycolysis. In addition, MOTS-c increases the levels of carnitine shuttles, which transport activated fatty acids into the mitochon-dria for β-oxidation, increases the level of a β- oxidation intermediate, and reduces intracellular levels of essential and non-essential fatty acids, suggesting enhanced lipid					

Product Data Sheet

	utilization; myocytes that stably overexpress MOTS-c also exhibits increased glucose uptake ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	MOTS-c injections in mice show activation of skeletal muscle AMPK and increased the level of its downstream glucose transporter GLUT4. MOTS-c may also act as a potential mitochondrial signal that mediates an exercise-induced mitohormesis response, thereby stimulating physiological adaptation and increased tolerance to exercise ^[1] . The primary target organ of MOTS-c appears to be skeletal muscle and fat. MOTS-c levels in mice decline with age in skeletal muscle and in circulation concomitantly with the age-dependent development of insulin resistance. Restoring MOTS-c levels by systemic injections in older mice (12 mo.) successfully reverses age-dependent skeletal muscle insulin resistance ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Changhan Lee, et al. MOTS-c: A Novel Mitochondrial-Derived Peptide Regulating Muscle and Fat Metabolism. Free Radic Biol Med. 2016 Nov;100:182-187.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA